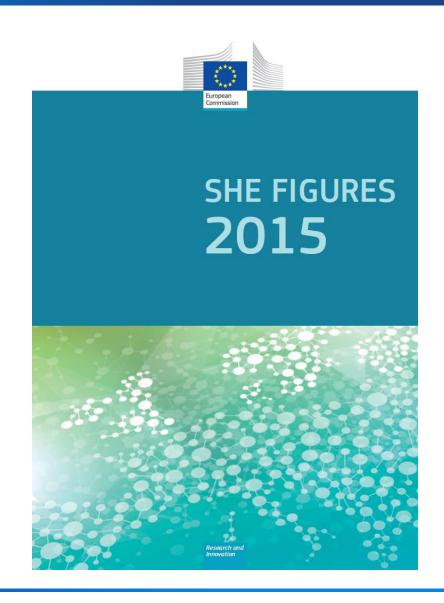
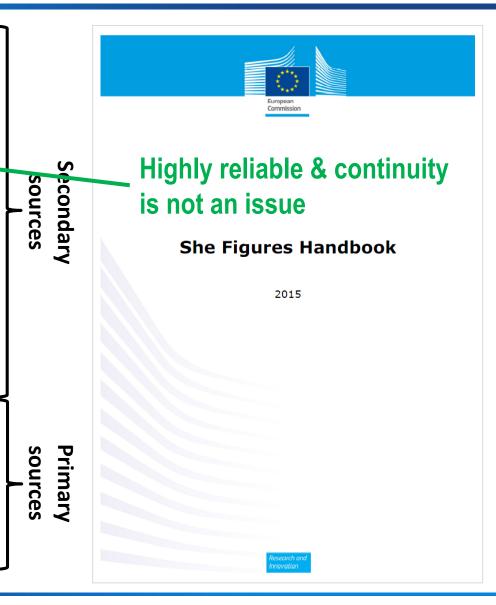


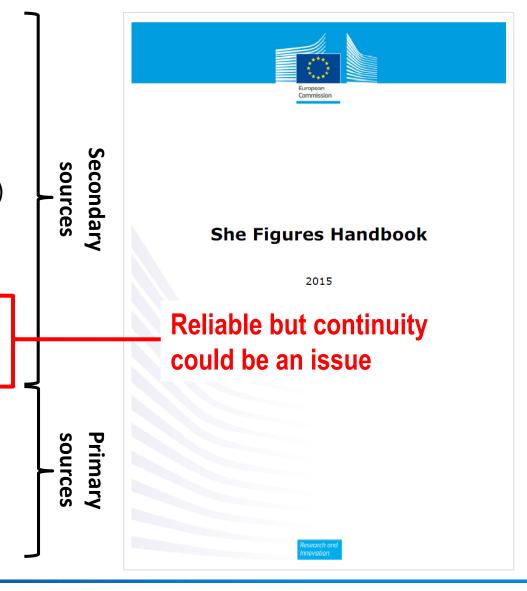
She Figures: data gaps, lessons & future directions

Plenary: Improving quality of STEM gender equality indicators GS9-Brussels, November 8, 2016



She Figures Structure


- Pool of graduate talent
- Participation in S&T occupations
- Labour market participation as researchers
- Working conditions of researchers
- Career advancement & participation in decisionmaking
- Research and innovation outputs


- Eurostat (38 indicators):
 - Education Statistics (6)
 - HRST(8)
 - High-tech Industry and knowledge-intensive services (2)
 - R&D Statistics (20)
 - Structure of earnings survey (2)
- MORE2 Survey (4)
- ERA Survey 2014 (3)
- Women in Science (WiS) questionnaire (13)
- Web of Science (WoS) (8)
- PATSTAT-EPO (**2**)

- Eurostat (38 indicators):
 - Education Statistics (6)
 - HRST(8)
 - High-tech Industry and knowledge-intensive services (2)
 - R&D Statistics (20)
 - Structure of earnings survey (2)
- MORE2 Survey (4)
- ERA Survey 2014 (3)
- Women in Science (WiS) questionnaire (13)
- Web of Science (WoS) (8)
- PATSTAT-EPO (2)

sources

- Eurostat (38 indicators):
 - Education Statistics (6)
 - HRST(8)
 - High-tech Industry and knowledge-intensive services (2)
 - R&D Statistics (20)
 - Structure of earnings survey (2)
- MORE2 Survey (4)
- ERA Survey 2014 (3)
- Women in Science (WiS) questionnaire (13)
- Web of Science (WoS) (8)
- PATSTAT-EPO (**2**)

- Eurostat (38 indicators):
 - Education Statistics (6)
 - HRST(8)
 - High-tech Industry and knowledge-intensive services (2)
 - R&D Statistics (20)
 - Structure of earnings survey (2)
- MORE2 Survey (4)
- ERA Survey 2014 (3)
- Women in Science (WiS) questionnaire (13)
- Web of Science (WoS) (8)
- PATSTAT-EPO (2)

Novelty in Working Conditions

- 1. Part-time employment of researchers in the Higher Education Sector (HES), out of the total researcher population, by sex, 2012
- 2. 'Precarious working contracts' of researchers in the Higher **Education Sector (HES),** out of the total researcher population, by sex, 2012
- 1. Sex differences for international mobility of researchers during their PhD, 2012
- 2. Sex differences for international mobility of researchers in post-PhD career stages, 2012
- Proportion of RPOs that adopted Gender Equality Plans, 2013
- 2. Share (%) R&D Personnel working in RPOs that adopted Gender **Equality Plans**, 2013
- Implementation of gender equality measures in RPOs, 2013

Novelty in Working Conditions

- 1. Part-time employment of researchers in the Higher Education Sector (HES), out of the total researcher population, by sex, 2012
- 2. 'Precarious working contracts' of researchers in the Higher Education Sector (HES), out of the total researcher population, by sex, 2012
- 1. Sex differences for international mobility of researchers during their PhD, 2012
- 2. Sex differences for international mobility of researchers in post-PhD career stages, 2012

MORE3 Survey - results for 2016 expected to be released end 2016

Continuity will not be an issue for SF2018

Novelty in Working Conditions

ERA Survey - discontinued in 2016 ERA monitoring exercise

Continuity will be an issue for ~ 30% of the figures in the Working Conditions chapter of SF2018

Alternatives?

Change in methodology → New data likely not comparable to old data

- 1. Proportion of RPOs that adopted Gender Equality Plans, 2013
- 2. Share (%) R&D Personnel working in RPOs that adopted Gender Equality Plans, 2013
- 3. Implementation of gender equality measures in RPOs, 2013

ERA Survey

Example of alternatives for gender equality plans in RPOs:

- JRC policy repository (Nat'l. level only):
 - Legal/policy initiatives and incentives related to women researchers' recruitment, retention and career progression
 - Policies/measures supporting cultural and institutional change on gender
- Integration into WiS questionnaire:
 - Advantage: Eliminate continuity/dependency issue, reducing the risk of future break in time series for monitoring progress
 - Disadvantage: Increase Statistical Correspondent workload (already very tight data collection time frame)

Feasibility of integration in WiS

Indicator	% of respondents who know of pre-existing	% of respondents who could send a questionnaire to RPOs in different sectors				
	natl. data (N=32)	HES	GOV	BES	PNP	
Existence of Gender Equality Plan or equivalent within RPOs	16%	38%	28%	22%	19%	
Share of RPOs overall R&D budget allocated to the Gender Equality Plan or equivalent	0%					
Existence of specific measures/actions introduced by RPOs to support the Gender Equality Plan or equivalent	9% (or 60%)					

Unpublished data

- Perceived barriers to integration of questions on gender equality plans in WiS questionnaire:
 - Low perceived relevance where plans are mandatory or not explicitly encouraged
 - Time consuming to add questions in National Statistical Programmes → should be planned well before the production of SF2018 starts
- WiS as a standalone tool feeding the SF publication and others?
- Other gaps in working conditions:
 - Proportion of men/women researchers with children:
 - EU statistics on income and living conditions (EU-SILC)
 - Issue: Eurostat does not provide the data at the adequate aggregation level → sample size too small → low reliability of estimates

- Perceived barriers to integration of questions on gender equality plans in WiS questionnaire:
 - Low perceived relevance where plans are mandatory or not explicitly encouraged

Availability of reliable and timely indicators is at greatest risk for the chapter on working conditions

- EU statistics on income and living conditions (EU-SILC)
- Issue: Eurostat does not provide the data at the adequate aggregation level → sample size too small → low reliability of estimates

WiS Data Collection: SF2015

- WiS questionnaire and guidelines revised with feedback from plenary and steering group meetings
 - Revised data collection structure in Excel prefilled questionnaires
- 10-week data collection period
- Single, centralised email address for all outgoing and incoming exchanges between study team and SCs
 - Automatically forwarded to two team members who were then responsible for responding depending on the question
 - Issues with the questionnaire itself (e.g. formatting, more columns needed)
 - Content-related questions (e.g. uncertainty about how to fill a table, questions related to guidelines)
- Biweekly email reminders sent from central address

WiS Data Collection: Lessons Learned

- Excel provides great flexibility but increases the workload of the study team at the validation and computation stages
 - Managing flags was challenging

 two separate sheets were used (data and flags) increasing the risk of processing errors
 - Flagging empty cells was inconsistent/incomplete making it difficult to distinguish missing data from 0s
 - Locked sheets to maintain the integrity of the questionnaire → ad-hoc adjustments necessary in specific cases → multiple back and forth with SC
- lacktriangle Differences in the interpretation of the guidelines lacktriangle intl. comparability
- Mass emails are not the most efficient/effective way of making decisions or sharing information
 - Balance between not overloading people with emails, and trying to ensure that any response relevant to all SCs was circulated

WiS Data Collection: Ideas for improvement?

Online platform with multiple windows

Guidelines

Data capture

Seamless integration of data & flag (prefilled)

If no data is captured flag is set to (:)

Worksheet structure allows filling multiple cells at once

Discussion forum

Engage SCs in discussing the guidelines & their issues

Moderated by 2 study team members → homogeneous interpretation

No need to overload SCs with mass emails

Fast response rate & transparent communications

Validation toolkit

Outliers in time series and across countries

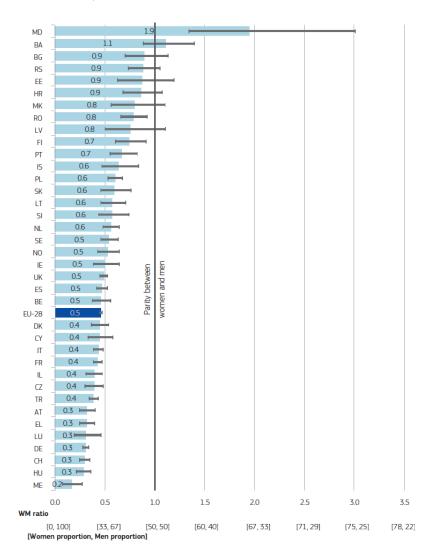
Breaks in time series

Better quality of submitted data \nearrow intl. comparability

Fewer issues > workload of study team and SCs

Easier to meet the tight project schedule

Sign-off by SCs


Feeds directly into the validation and computation procedures implemented in MSSQL

Future directions: R&I indicators

Figure 7.1. Women to men ratio of authorships (when acting as corresponding author) in all fields of science, 2011–2013

- More or less confirms the under-representation of women amongst researchers consistent with Eurostat data showing under-representation of women amongst researchers
 - Increasing value of data:
 Reporting on differences between the average production size of women and men researchers
 - Data need: # of researchers by sex by subfield
 - Output size varies across subfields

Future directions: R&I indicators

Table 7.10. Proportion of a country's scientific publications including a gender dimension in their research content, by field of science, 2002–2005 and 2010–2013

	Natural sciences		Engineering and technology		Medical sciences		Agricultural sciences		Social sciences		Humanities	
	02-05	10–13	02-05	10–13	02-05	10–13	02-05	10–13	02-05	10–13	02-05	10–13
World	0.1	0.2	0.0	0.1	2.8	3.9	0.0	0.0	6.8	7.2	3.9	3.9
EU-28	0.1	0.2	0.0	0.1	2.5	3.8	0.0	0.0	5.6	6.2	2.7	3.2

- The % of publications with a gender dimension is highest in the SS, H and MS, and lowest in NS, ET, and AS
- Relevance is not uniform across fields → different baselines are observed and no targets established → if targets were set, they should vary across fields
- Aggregated data for all fields should account for differences in the specialisation patterns of countries
- Future work: GDRC in H2020 projects and relative contribution of women/men researchers to various policy issues (GDRC, Open Acess, etc.)

Special Thanks!

Study team:

Science-Metrix

Chantale Tippett

Éric Archambault

Contact: David Campbell

david.campbell@science-metrix.com

ICF International

Katerina Mantouvalou

Lucy Arora

KU Leuven

Julie Callaert

Other key contributors:

European Commission, DG-RTD

Roberta Pattono

Viviane Willis-Mazzichi

Helsinki Group on Gender in Research and Innovation & its Statistical Correspondents

Eurostat, EIGE & OECD

And all the unlisted contributors!